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Stability properties of hydromagnetic waves (shear and compressional Alfven waves) in spatially
homogeneous plasma are investigated when the equilibrium particle velocity distributions in both
parallel and perpendicular directions (in reference to the ambient magnetic field) are modeled by
kappa distributions. Analysis is presented for the limiting cases |&,/<1 and |€,|> 1 for which
solutions of the dispersion relations are analytically tractable. Here & (a=e.i) is the ratio of the
wave phase speed and the electron (ion) thermal speed. Both low and high B (=plasma pressure/
magnetic pressure) plasmas are considered. The distinguishing features of the hydromagnetic waves
in kappa distribution plasma are (1) both Landau damping and transit-time damping rates are larger
than thosc in Maxwellian plasma because of the cnhancced high-cnergy tail of the kappa distribution
and (2) density and tempcrature perturbations in response to the electromagnetic perturbations are
different from those in Maxwellian plasma when |£,| < 1. Moreover, frequency of the oscillatory
stable modes (e.g.. kinetic shear Alfven wave) and excitation condition of the nonoscillatory (zero
frequency) unstable modes (e.g., mirror instability) in kappa distribution plasma are also different
from those in Maxwcllian plasma. Quantitative estimates of the differences depend on the specific
choice of the kappa distribution. For simplicity of notations, same spectral indices x; and k| have
been assumed for both electron and ion population. However, the analysis can be easily generalized
to allow for different values of the spectral indices for the two charged populations.

[DOI: 10.1063/1.3132629]

I. INTRODUCTION carrying, anisotropic plasma, where the equilibrium particle
velocity distributions were modeled by different kappa dis-
tributions. In the present paper, we investigate the stability
properties of the hydromagnetic waves in spatially homoge-
neous plasma, where the equilibrium particle velocity distri-
butions in both parallel and perpendicular directions with
respect to the ambient magnetic field are modeled by kappa
distributions.

The paper is organized in the following way. In Sec. 11,
we describe the general mathematical formalism leading to
the derivation of the dispersion relations for hydromagnetic
waves in kappa distribution plasma. In Sec. 111, we analyze
the dispersion relation in various limits and describe the sta-
bility properties of the well-known hydromagnetic waves.
Both low-B8 (<€ 1) (B=plasma pressure/magnetic pressure)
and high-8 (8>1) plasmas are considered. In Sec. 1V, we
discuss the distinguishing features of the hydromagnetic
waves in kappa distribution plasma and offer some physical
interpretations.

Low frequency (lower than the ion cyclotron frequency)
and long perpendicular wavelength (longer than the ion gy-
roradius) electromagnetic waves, often referred to as hydro-
magnetic waves, are often observed and/or invoked to ex-
plain the phenomena in both space and laboratory plasmas.
These waves and their stability properties in Maxwecllian
plasma have been investigated quite extensively for many
ycars by many authors and a good discussion on them can be
found in the plasma textbook by Stix." In collisionless
plasma, however, particle velocity distributions can often de-
part from being Maxwelhan. For example, in naturally oc-
curring plasma such as plasma in the planetary magneto-
spheres and in the solar wind, the particle velocity
distributions are observed to have non-Maxwellian (power-
law), high-energy tail.> The distribution function that can
better model such particle velocity distributions s
known as the generalized Lorentzian or the kappa
distribution® with functional dependence of the form fy(v)
~[1+0%/(«#)]"**V. For finite values of the spectral index
K, the kappa distribution has power-law tail at velocities
larger than the thermal velocity 6, and it approaches a Max-
wellian distribution [~exp(-v?/*)] in the limit as x— .
Typical values of « for space plasmas arc in the range of
2-6. In the last several years. many authors have studied
electrostatic and clectromagnetic waves in spatially homoge-
neous plasma using different types of kappa distributions for
the equilibrium state.* ™" In a recent paper, ® we studied low B o &
frequency (lower than the ion cyclotron frequency) and long ~ other three with the help of k X E=(w/c¢)B and k-B=0. The
perpendicular wavelength (longer than the ion gyroradius) three field variables that we consider to be physically most
electrostatic waves in spatially inhomogeneous, current- mcaningful for hydromagnetic waves are E Ii, and E The

Il. MATHEMATICAL FORMALISM

We adopt a Cartesian coordinate system whose z-axis 1s
along the ambient uniform magnetic field By and consider
small amplitude electromagnetic perturbations represented
by (E,B)exp(—iwt+ik  y+ikyz) with k,>0 and k | >0. Elec-
tromagnetic modes in plasma can be described 1n terms of

any three of the six field variables (E.B) by climinating the
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magnitudc of Ez is a mcasurc of tbe non-MHD (magnetohy-
drodynamic) cbaracter of tbe waves and EZ corresponds to
the compressional component of the magnetic perturbation,
wbich characterizes waves in finite- 8 plasma. Since w<ck
for bydromagnetic waves, wbere k*=kf +k°, the displace-
ment current can be neglected and, conscquently, V-j=0
(implying quasmeulrahly) can be assumed. The tbree equa-
tions that determine E Bx, and B are tben tbe quasineutral-
ity condition

Zqﬁaziqafdvffo (1)

and tbe perpendicular (to Bgy) components of Amperc’s law
given by

- dmik | - 4k |
B=-—f=———=3 qnj dvu,f,. (2)
ck =
= 4. 4771
B.=-—j,=-—2q.| dvfa. (3)
cky cky "o

Here g, 1s the eharge and 77, 1s the perturhed density of tbe
charged particle species a(=e i), and J are the components of
tbe perturbed current density. The perturbed quantities arc
calculated from the perturbed particle distribution function
fo=f.(k,v,0), as shown in Egs. (1)-(3).

We refer to a eylindrieal coordinate system in velocity
space witb its z-axis parallel to By, so that v,=v, cos ¢, v
=v, sin ¢, and v,=v-By/By=v|, wbere ¢ is tbe azimutb
angle. The equilibrium distribution function f,y, which can
he constructed from thc constants of motion (uz_ and v)) of
the charged particle species a, 1s taken to be deserihed by tbe

produet hi-Lorentzian-type kappa distribution function sucb
2.16
as

+%

1 ExXpl=ip, €os ¢ +ing)

s 9o
k,v,w) = - —*— 2
f"( > w) m(rklln=—°<’ w_‘kllt"il+"'£ler
xk—ﬁ 2(k)ﬁ]f'(1)
; +2w— L 92 94).
uaU" 1w 1902_] Ja0O\U -0
wherc 2
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o I +1) (I v’ ) gy FL)
, - o + -
260, Oy 1T +112) K O,

2 —(x+1)
<1+ el ) . (4)
K||02||

ai

[’ )=

The function f,,o(uz._,u") is normalized to tbe equilibrium
{(unperturbed) particle density ng, wbile 0, and @, are tbe
parallel and perpendicular tbermal speeds, respectively. The
parallel and perpendieular pressures in the equilibrium state

Pat and p,, are

Pa = ’IOT(I“ = 'nnJV dVUlfan = (

2% )lm,,MOO2 (5)

26-1/2 e

1 J : ( K, ) 1 .
Par =gl =-my| dvv fo=|—— =m0, (6)
2 Kk, —1/2 z
for k,>1/2 and «, > 1. Here T, and T, arc tbe parallel
and perpendicular effective particle temperatures, respec-
tively. Two otber parameters related to p,, and p,, whicb
naturally occur in tbe study of electromagnctic waves arc
Ba= 87'rpa4|/B(2)=[2K”/(2K"—l)](4'rrm01100(2,"/30 and S,
=8mp,, /Ba=[x./(k, -~ )](dmmny8. |B}).

In our choice of the equilibrium distribution function we
bave allowed tbe possibility of different values of tbe spcc-
tral index in parallel and perpendieular direetions. In fact, it
may he reasonably argued that &, > k; hecause of some
equilihration and isotropization in the perpendicular plane
wbhile preferential acceleration along tbe ambient magnetic
ficld. Realistically, the spectral indices would also be differ-
ent for the eleetron and the 1on populations. But, for simplic-
ity of notations, we bave assumed same spectral indices for
botb tbe populations. However, the analysis presented in tbis
section and in Secs. Il and 1V can be easily generalized to
allow for different values of the spectral indices for the two
populations.

Solving the linearized Vlasov equation by standard pro-
cedure (integration along the unperturhed particle orbits n
tbc ambient magnetic field Bg), we first obtain'’

n§d, ~  kyv, o, =
EZJ,,(,u(, L,, =2nQ,—5 |+ | —J(u)B, +i——J, (u)B,
’;UL ck | L STHRCE -

(7

a=qaBo/ (my0), J,(1e,) 1s the Bessel function of tbe first kind, and tbe prime notation on J,, denotes its first derivative

witb respect o the argument p,=k v, /€, As mentioned earlier, E E and B have hecn eliminated n favor ofE B and

BZ. Using tbe identity

+x

= D (=) (pma)exp(- ipg)
p—-x

exp(—ip, €os @) =

in Eq. (7) and earrying out the ¢-intcgrations we then obtain

(8)
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27 . Gt
~ 2miq, ] d ) n€l, , kv ]
d =- k -2nQ),— J B ——J s B
J’O ¢j” Inn,k” "=§_:I (l)—k“l)”‘f'ﬂ&z { ZJ"( "(7 Uy Wia U2 I:LI\ ll\
x| by + 2= hypg) = | Hfc? 00 9)
T+ 20— ko) i)
u(?U" w = Ky P a0\U ,U)

2 L
~ 2mq, ] ( d ) [11(2 A,U : 7-]
dg cos = Jd k— =20, — | + JT B, + —(J,)°B,
fo e maky n=§-:»f -k, + nfd { : 3 v " v’ ck A @ (a)°8:

I d 2
X k”ﬁ_vu + 2 (en— kuUu)E faolv? 0y, (10)
2 - 27ig, - I n} ( ) [nu k, v _ ]
i = = “ 3 EJ ky— - 2082, ——J.J'B.
jo de sin ‘Pf(y m,,k!; "gx w—l\'|gl)||+nﬂn/\' -y J 1 n (9 o lk g .]".]" 5
[’\u_ + 2@~ ".|U||) ]}fno(v IR (11)
]

which are relevant for the calculation of 7, J,, and ]\ However, for the description of the low frequency and long parallel
wavelength modes [(w,k;0,) <),] considered here, Egs. (9)—(11) can be simplified by taking (w—kp,+nQ,)"
= (nQ,)"[1-(w—kw,)/nQ,) for n#0 in the sum and using the identities ¥, 40/2=1-J3, 2,0/ Ji=~Jodo. Zpeondi=0,
3, 20liin=0,2,.0J,J./n=0,and 2, ,o(J})?/n=0. Keeping only the leading order nonzero terms in Egs. (9)~(11). we then find

2ar _ " (7 j2 =) l\ L J()/’ .
f def o= i { [2“ _-lo) 2 k||_] [(l —-]0) - - Bz}
0 mnkll L w—kyy dyy /\’ L ¢ w=ky

J J .
X[’\'uﬁ_vu’rz(w—kuvu)?] Jaolv' 1)), (12)
2 . 2mg ( E & ) Ko [ W w =k
do cos of . = a = e = J N —LB. (0 =) J 20 Koy
fo PLES e mak |\ o=k C’\ oo koo TLo=ky il Q;
|:I\|_+2((1) I\‘U“) :lfn()(l) U“), (Iz)
au

f"d =i [(CE = )(I I8 =ity G "E] o=k ) W), (14)
S]n S e (L —f -—— - o ) ‘-. !
0 R kj kv By ° k, i %k, By Iy con Joltr

The expressions for i, J,. and _7\ evaluated from Egs. (12)—(14) provide adequate description of hydromagnetic waves in both
low-B (B<<1) and high-8 (8> 1) plasmas including finite gyroradius effects.
The expressions for i, J,. and _7\ that are obtained from Eqgs. (12)—(14) (see Appendix A for some details) are

T P P )og“z’(s)}i Ay(b o) ——B [ Ao~ Adbo) 2720 | & (15)
- 9 a) T ak K\ Sa 2 aK i3 ak ax et -
ng  m.k 0, ] : 2031'" . I ck ! ! 20;u 0
02 C -~ wE
(b Aslb 7 - =
Eqnno [ (B i) — Al ,,K>20i“ (&)} 5B %fln"oAz(bnx)k" B,
Q| [ < ki 0||> ki L% 6. B.
= == — —2LlA (b, )-A Aglb a7 =, 16
'% Aallery {(92 26-1 Aslbad + 202 obaw) = Arlbac) + Aglbar) 20, Gt By e
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a rnn'l‘lle2 k a b

- 2igin, w 0, o
3= 2 “ﬂo T aa g A ](bnx)E lz da’o {02 (bnx) +

w
b T
+ % GaltoAx( nx)kl 5

Here9 §n= w/ (kll Onll)v Z,'(( §n) zdzx(gn)/dfm bm(
=k2 &, /(2Q2), and the A; are dcfined by

1
) 2(1+u I, & )<L+t

Al(bm()=2f dv v (1- .IO)
]

35 G
=_|1-= DO #6 > 1, (18)
4, -1 7

o J(2)

2
Abod = | dv,v,
2bad = 2 fo VA o e, By

ol

K| 3 P 5
=[1- bm(+ __—A_—bm( Y
k=1 4k, = 1), -2)

K 2>2, (19)

. = 40, f"d 2 Jol! 1
ST £ J, s Oﬁv (1 402 hie, 8, )L™

1

P (20)

— b,,K), & = (21)
2k, -2

I
A 2(l+v e, 62 ) it

L Yl

A5(b,,,()502if dv v’ U)—
@ 0

= bm(>, Kk, >1, (22)

n
|
2
|
4 (]
e

8 o JI 2
Aé(an)E—J dv v’ 2( )

0(‘rj o (I+v L/K,.OL:H)K‘H
K, 3k
= (1- - b,,,(), %, =2, (23)
Kk, =1 =2

Ao if (J)2 '
\Waxk 03“ . 0 (1+U Jirch 024)x-+l

I

P |Bas >2, (24
2K'—2 (YK) axK K_L ()
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2

kwfu[ T 2K 03’"A(b )] B,
02 QWak K”—IOZV ax B()

[e4

(17)

4 ¢ 3 (J)?
Aglby ) =—1 dv, v 5
8( K) gzdfo ..(l +U2>/K_- 0;.'&)1(_.+l
= s ( = & )b >3
= (o DT 2w, e ELES

(25)

for b,.<1 (see Appendix A for the evaluation of the inte-
grals). In the limit as x, — o<, an—¥I\2 T, /(m, ()2)— b
which is a notation that is commonly used in the study of
Maxwellian plasma, and A; go over to the corresponding
expressions for Maxwellian distrihution. For example, in the
limit  as Aba) ——11-1yby)exp(-b,)] and
Ay(ba)— Io(ba)exp(=b,), where Iy is the modified Bessel
function. The function Z,(£,) is the plasma dispersion func-
tion when the parallel velocity distribution is given hy Eq.
(4) and 1s defined hy16

K_ —»oc,

Z(6)= I'(s+ 1) i ds
T m 2 (w4 172) J e (5= EQQ + s’

Imé£,>0 (26)

and by the analytic continuation of Eq. (26) for Im £,=0.

This is similar to Z_(§) of Summers and Thorne.” The series

and the asymptotic expansions of Z, for integer values of
16

are

Z (&)= i\;f(xu)<l Jeapi &y )
K
2e+ 1 2K,+3 ,
= ST e e [l (27)
Ki 3K ‘

Z (&)= _iNmfle) i(l bl

1
(1 + &) g, 2xu—13+"')’
&= 1 (28)

where f(x) =T"(x+ 1)/[Kl}"2l‘(x"+ 1/2)]. For nonintcger (in-
cluding half-integer) valucs of k;, the asymptotic expansion
has correction terms,'™'® which add small corrections to the
real frequency of the excited waves. We ignore such correc-
tions in the present analysis. The linear dispersion relation is
ohtained hy suhstituting Egs. (15)—(17) into Egs. (1)—(3) and

demanding nontrivial solutions of E,, B,, and B..
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lil. ANALYSIS OF HYDROMAGNETIC WAVES

A. Shear Alfven waves

In the study of shear Alfven waves, compressional com-
ponent of the magnetic perturbation (E:) may be ignored,
while the magnetic field line bending represented by I}X 18
more important. This simplifies the analysis considerahly.
We assume b,,=0 but retain finite ion gyroradius (b, <1)
effects. After substituting the appropriate expressions for 7,
and J, into Egs. (1) and (3). we ohtain

Z(E) M[A (h.) + Ar(b )iz'( )] i
x§e+ 02 l’ix+ 2 ix20i2"x§i &

(e

_Eniflge (b, B (29)
- m,0,-2_, ck I\Yy/ 8 xs
Ay(b,) o -~ Ab;) wck, ~
|+ —%—— +g(b;.08) |B,= E.,
[ " kfv;+g(’ ﬁ)} by KV2C
(30)
where
- |( ; 1 ('K>—1>1—A2(b,-x)B
i =P = Pa) + 2 i
B\ D, ,B 2 iB :BII 2 ;& b,'K
A,(b;,)
+]b—[3i||:|. (3')

Here electron terms that are of the order of m,/m; in com-
parison with the ion terms have heen neglected. Also, we
have used the definitions of b;, and Vi:B(z)/(41rm,-no), where
V, is the Alfven speed. By comhining Eq. (29) with Eq. (30)
we then ohtain the Kinetic dispersion relation for shear Al-
fven waves, which can be written as

Ab,) o il ﬁ)HZ'(f)+m803"A (b )Z(£)
ity 2 1K K\ 5e 123 K\S1
by KV2E i
m A (b) kO
P 2100 2 A0y 4 g(by )] =0, 32
5l7 m,- b,-K QIZ [ +g(bu( ﬁ)] ( )

We now solve Eq. (32) for different limiting values of [€,].
For convenience, we shall use the following definitions in
our prcscnlali()n:

L&) = Naf()[(s + 1) i) Ene €] <1, (33)

L&) = vaf(s)(s+ €S+ EJi)™*2 €] > 1.
(34)
First, we consider [£]>1 and [£]>1, ic., 0,0,

< w/k; (cold electrons and cold ions). Referring to Eq. (28),
we realize that the term (m,/m;)(¢” /Oﬁl)Az(biK)Z;(f,-) in Eq.

ell

(32) may be neglected in comparison with Z/(¢,) as m,/m;
<1 and |§|>|&,| typically. Using the leading terms in the
asymptotic expansion of Z/(¢,), we then find

Phys. Plasmas 16, 052106 (2009)

Ailb) o
e 2y
bix ki Va

+ (b B) |[1 - 2iL (£)€]

A](b,‘x) (_2k2 (1)2
+——— 551 +gh,. H)]=0, (35)
2 22 ix
by wp, Kj Va
where wlz,e:4'rrezno/me. Without the imaginary term that ac-
counts for wave-particle interaction. Eq. (35) yields

w2 = biK l+g(bimB)
Vi Abud 1+ (K @ )1+ 8(b, B))

Since [€,]~V,/ 0,31 requires [(21,—1)/26)Bo<<m,/m,
<1, [(2x=1)/2K]By<<1 and since we can assume S,
~ B for typical plasma, the dispersion relation (36) is valid
for low-B(B<1) plasma. For such plasma we may take g
< 1. Then, Eq. (36) becomes

(36)

w? b, 1

V2T Ab) 1 +(RTwl)

(37)

When « —2, Eq. (37) becomes identical to the dispersion
relation for the inertial shear Alfven wave that was derived
earlier for Maxwellian p]asma.zo'22 So, Eq. (37) is the dis-
persion relation for inertial shear Alfven wave in kappa dis-
tribution g]asma. The inertial shear Alfven wave has been
suggested 02! as a mechanism for particle acceleration just
ahove the auroral ionosphere where the plasma is cold
enough so that 8,;<€m,/m;. We may note that without the
(Czk%/wf,e) term, the dispersion relation follows directly
from Eq. (30) if we set E, equal to zero (MHD limit). The
(c2%? /wlzw) term arises from the non-MHD feature (E#:())
and denotes the kinetic modification due to finite electron
skin depth (c/w,,). It may also be verified that b,
<c2k2/w2e for the low-g plasma defined above. Since
A/b,=-1and (1-Ay)/b;, =« /(x, —1) when b <1, Eq.
(37) further reduces to

w? |

BVe Talk/o,)

(38)

which 1s 1dentical to the dispersion relation for Maxwellian
p]asma.m 2 This is expected because under the conditions
[€.]3 1, bae=0 and with the omission of the wave-particle
interaction, details of the velocity distribution do not matter
and so whether the distrihution is kappa or Maxwellian is
unimportant. With the inclusion of the imaginary term,
which 1s small compared to unity, the approximate dispersion
relation for low-8 plasma with b, =0 1s

ol ORI B (39)
33 = — <l 2 K SelSe | - &
kivy 1+ c2k? /wlzn, 1+ c%? /w,zn,

It exhihits electron Landau damping of the inertial shear
Alfven wave in kappa distribution plasma.

Second, we consider |&]>1 and |&,|<1, ic., Oy<w/k
< 6, (hot electrons and cold ions). For simplicity of presen-
tation we ignore the terms proportional to Z/(&;). This elimi-
nates the 1on sound mode, which is of no interest here. Using
the leading terms of the series expansion for Z/(&,) in Eq.
(32) we then find
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1+A'(b'“) +g(b,. B) [1+ 24 L(g)]
biK /\" Vﬁ g 402 12 K|| &
2 1A,(b
A iG] pil1 +g(bi B)]=0. (40)
2K”+l bIK
Here p,=c,/§); and Cf:pt,"/(m,-no)=[K"/(2K"—])](mt,/m,-)&fII

=T,,/m;. Without the imaginary term, Eq. (40) yields

Za [ e, 2Ly 2][1 (bioB)].  (41)
=|- & p + B
K2V2 Al Dl o &\Vix

The condition |£,|~V4/0,,<1 requires [(2x,—1)/2k]B.
>m,/m; and, as beforc, [(2x,—1)/2x])By<<1. Becausc of
these conditions we may negleet By and B;, (considering
Bi ~ By in typical plasma) in g and rewrite Eq. (41) as

o’ _[ bi - 2K — lkz 2:||:1 +=(8., - B )]
A2 A 2t P ol
K| 3 2K|| 1 T
=1+ -+ b,
Kk —1\4 2+1 T

X[] +';_(Be‘ _Bell):l~ (42)

In the last step of Eq. (42) we have used the small-b;, ex-
pansion of A,(b,,) [refer to Eq. (18)] and the relation kipf
=[a /(e = D)NT/ T; b

If (m,/m)26)/ 2i=1)]<By<<1 and B, ~By<I1,
then Eq. (42) deseribes the kinetic shear Alfven wave in
low-f kappa distribution plasma consisting of hot electrons
and cold 1ons. Unlike the ideal MHD shear Alfven wave, the
kinetic shear Alfven wave has E,(#0) associated with it and
incorporates finite ion gyroradius effect. In the limit as
K, k | — %, we recover the dispersion relation for the kinetic
Alfven wave in Maxwellian plasma, 2% which has been in-
voked for plasma hcalingzz and for auroral particle
aceeleration.”* With the imaginary term in Eq. (40) included,
the approximate dispersion relation 1s

2 1
" Ki— K2 2[1 _

(l)2 bix

V2T A(b)

I
2K"+ ]Lx(fe)]~ (43)

It deseribes electron Landau damping of the kinetic Alfven
wave in low-8 kappa distribution plasma.

For high-B, (8,> 1) plasma, on the other hand, Eq. (42)
deseribes nonoseillatory, purely growing modes when

Bell - Be L= 2. (44)

The instability condition is the same as that for the fire-hose
{garden-hose) inslabilily25 2 in Maxwellian plasma with an-
isotropic electron pressures (8,,> B, ). The growth rate of
the instability is different for kappa distribution plasma if the
finite 1on gyroradius effcet is retaincd.

Next, we consider the reverse situation & <1, |£]> 1,
i.c., O,<<w/k;< 0y (cold electrons and hot ions). Using the
series expansion of Z(£;) and the asymptotic expansion of
Z'(£,) and keeping only the leading terms in Eq. (32), we
find

Phys. Plasmas 16, 052106 (2009)

[ Ab,) o
|+ ——

e +g(b,-KsB)]
by kVE

Ik

14— L)
q A2(b,K)2K”+l mO‘ +AD, §,

_ 2K ﬁAl(bix)
26+ 168, Aylbi)

[1+gbi.B]=0. (45)

Without the imaginary term, Eq. (45) yields

o’ _ b l: 2K ﬁAl(bix)

= .
KV oAby zK“Ho;_Az(,,iK)][ +g(biB)]

(46)

The dispersion relation (46) is valid for [(2«,—1)/2x]1B8,
<m,/m; and [(2x—1)/2k;)B;> 1. If we further use the
small-b;, expansion of A, and A,, then Eq. (46) becomes

(l)2 K 3 2K|| 1 T,'”
72 =1+ -+ b,
kiVi Kk, —1\4 2,5+ 1T,;,

1
X[l +§(ﬁ_ —gm)] (47)

Comparison with Eq. (42) indieates that the role of the elec-
tron temperatures is now played by the ion temperatures.
When B;,—- B <2, Eq. (47) deseribes another type of kinetie
shear Alfven wave in kappa distribution plasma consisting of
cold clectrons and hot ions. On the other hand, if 8- 8;,
>2, Eq. (47) deseribes nonoscillatory, purely growing
modes, which are driven unstable by the ion pressure aniso-
tropy. This is similar to the fire-hose inslahililyZS' 7 condition
[Eq. (44)]. The imaginary term in Eq. (45) represents the
Landau damping (both electron and ion) of the modes.
Finally, we consider |§|<1 and |E|<1, ie., 6.0,
> w/k (hot electrons and hot ions). Using the leading terms
of the series expansion for Z/(£,) in Eq. (32). we obtain the

dispersion relation
) )
® m, 0, 2k, m, o, Ay
1+ ——44,+ y Doy AsL
{ S ]{ L&) 2 &) b

klfv,i mroﬁ| 2K+
P meofu(Az_ 261 Oy )
m;6, 26+ 1 02
2k 03
H i L(E) + AL (&) | F1 4 g)=0.  (48)
2K|| m,0’2”
When b;, <1, Eq. (48) reduees to
i—[ulw B)] (49)
K2V3 T g |

where B =2,8, and B,=2_B,. The dispersion relation
(49) applies to high-8 plasma since ~Val0,<1 re-
quires [(2«,—1)/2x)B, > m,/m; and [(2x,—1)/2x]1By> 1.
It indicates instability due to pressure anisotropy when
B,— B, >2. The instability eondition is similar to Eq. (44)
except that both electron and ion pressures play roles.
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B. Compressional Alfven waves

For the compressional Allven waves, we may neglect 5,
in comparison with 1-7:. which simplifies the analysis. We also
consider long perpendicular wavelength modces (b, <<1).
Keeping the leading terms in A (b, )—Ag(b,,) and substitut-

ing the resulting expressions lor i, and J, into Egs. (1) and
(2). we find
m, 6 ieE
7' e ¢ (’llzl % 2
[ = mieﬁ: o ’"e’\'uof
N By Ty | (50)
_KA_I 203" K 205 K\t Bov
o]
l=
I\zvi 2,\22 (Bn Bn'il)
k? K 02 =
+ = L T+ ~Z' (&) | 1B,
T et I
Kook 477(]“}1002
=i —2L7'(&,)E,, 51
w12 by ¢, 2t B

where electron terms that are of the order of m,/m; in com-
parison with the ion terms have been neglected and k° p?
<1 has been assumed. It is important to note that Egs. (50)
and (51) are valid for x,>1/2 and «, >2. As before, we
study the stability properties of the modes for dilTerent lim-
iting values of |£,|.
First, we consider |&|>1 and |&|>1, ie., 6,.0,
w/k; (cold electrons and cold ions). Using the asymptotic
expansions of Z.(&,), keeping only the leading terms by not-

ing |3 |£&.| typically, and then combin-
ing Egs. (50) and (51) we derive the dispersion relation
i py = T 548, 7 4 o s m K ke
KBvy o 24 ““4m, K w2
e e K (52)
2K -k, -2 ,Bu. ‘

A possible root of the quartic equation, which is consistent
with [£]>1, is obtained when B2 (m;/m,)(k> /4k7)
X(k,%Vi/mz) term in the equation can be neglected. This, in
essence, amounts to neglecting the term associated with E,
on the right-hand side of Eq. (51) and the condition for it is
B2, <(m,/m)[k*/(kk>)). When the condition is satisfied,
the dispersion relation is
2 e

+(B. -8 ” 3 tB.3

KV

. K i B:A

12":.‘ Ik, =2 B, /\2L =tk oY
which describes the damped compressional Alfven mode in
kappa distribution plasma including finite pressure ellects. In
the cold plasma limit (8,6, —0), it reduces 10 w=kV,.
The real part of Eq. (53) is the same as that in Maxwellian
plasma.I The imaginary term represents electron transit-time
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damping (magnetic analogue of Landau damping) in kappa
distribution plasma.

In the parameter regimes |£|>1 and |£|<1, ie., 0,
< w/k;< 6, (hot electrons and cold ions). using the leading
terms of the appropriate expansions in Eqgs. (50) and (51),
and neglecting kﬁOﬁ,/wz compared to terms of the order ol

umty or larger, we find
B, 'eE'
AL &
Bii m.ky ell

{I 2= ”‘u‘ o 2k
K B, . 2k { BaBi. }}
|+ i—— £)— =2
2«||—|Be.{ ] R g el

2K“+ 1 w2 2K||

x e, (54)
By :

2
1 - i +ﬂ
KV3 2k

L8, - B)
kz( K—|2K”+Ii)

s =
k- B K>—22K”—I B(.“

[L (&) +

N ) 2 2 =
RN 24 oL [" ki il L(é)]}
0

ki =2215-1 k" [ Ba By
oy K2t ( Bl )
==f, kg{ o +il L (&) - 5. B L&)
ieE: (55)
mky 07, -

By neglecting the imaginary terms in Egs. (54) and (55), we
obtain the dispersion relation

(I 26— 1A,,¢)I ok Br— )
2q, 41 wP K2V eYs d
k{( K, - 126+ 18 ) B 2541 B "
o+~ -+ —=——="=0.
- ), =22k -1 By 2k2 21— 1 By
(56)

When ki /k2<2/8, and B,> 1, one of the roots ol Eq. (56)
corresponds to the slow‘ magnetosonic mode with w’
~[(2K= 1)/ (26, + DIkIcZ, and the root is approximately
given by

(1)2 Bz K
l‘,lcs|: B B

26+ 1
2[‘}‘,"1( —‘22K|—|

21— 1 BZ K =12+ 1
S——— 13+ —==——=——"|. (57)
2K\ g ] B(’h 22K|:_ I

‘v

The mode becomes unstable if the inequality

K= 2

K -1

20+ 1 B, B. 2k, =2)
< =
2= 11+ 8, By K

(58)

1s satishied. The other root corresponds to the “fast” magne-
tosonic mode w~kV, and 1s approximately given by
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w’ +B, Bz K, 2K+ 1
k2V2_ 2Bk —22K— 1"

(59)

The instability condition for this mode is

26+ 1 B feu | Uki=2)
2= 11+ 8, By Ky

In the limit as «, k| — o, instability conditions (58) and (60)
reduce to the ones that were found for Maxwellian plasma,
and the instabilities wcre refcrred to as the field-swelling
instabilities.”** For some finite values of x(>1/2) and
K (>2), the range of values of B, for instability, as defined
by inequality (58), can be much narrower and the threshold
value of B, | (> B,)) for instability, as suggested by incquality
(60), can be much lower than those for Maxwellian plasma.
In the case of weak pressure anisotropy so that the plasma is
near marginal stability, the imaginary terms in Eqs. (54) and
(55), which take into account Landau damping and transit-
time damping by electrons and 1ons, should be retained in the
analysis.

Ncxt, we consider the rcverse situation, 1.e., |§,—| <1,
|£]>1 (cold electrons and hot ions), and assume that 6,
=(. In this case, Eq. (50) yields

(60)

ieE, Kk, 2+ 1m, o EZ B,
=i AR (o1)
mk6;, k=1 26 mk0 By By

Therefore, we may set the right-hand side of Eq. (51)
equal to zero. Moreover, we observe that wZ/(kZVi)
< (KNG V) =[(2K=1) 1260k} 1K) By as |€] <1. Then
the dispcrsion relation that follows from Eq. (51) is

K
1+ ﬁ(ﬂ; - Ba) + P‘Bi L

x{l—K‘—l 2k _‘1[2’("4-1 +iLK(§i)j|}:
K| —22K||_l Bill 2K"
(62)

Here we have used @ /03=[(x, ~1)/x 21/ (2K=1)]
X(B; ./ By)- Referring to the definition of L, (&) we solve Eq.
(62) for w and find

kil Ky =220 -1 Ba k
2\47Tf(K||) K, =1 k+1 ﬂ" /\2

X|:k_i(l Bu Bl")
k 2

K — 12+ 1 8
+_;_(1+B’_l_K*_K”__"1£):|.
k K| —22K||—l B,'”

(63)

Instability (Im w>0) occurs when
kif |, Bu=Ba), K

For nearly parallel propagation (k,/k > 1), the instability
eondition beeomes B;~—B;, > 2, which is same as the condi-
tion for the fire-hose (garden-hose) instability of shear

2
K, = 12K+ 1@)<0.
K, =226 =1 By

(64)

.
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Alfven wave due to ion pressure anisotropy [see Eq. (47) and
the discussion following it] and which is the same for both
kappa and Maxwellian plasmas. On the other hand, for
nearly perpendicular propagation (k;/k, <€1), the instability
condition is

Bl k=221

Ba  xi-12k+1

which is the condition for the mirror instability in kappa
distribution plasma. In the limit as «,x — <, we recover
the 1nstability condmon for the mirror instability in Max-
wcllian plasma.*® For some finite values of x(>1/2) and
Kk ,(>2), the factor on the right-hand side of Eq. (65) can be
signifieantly smaller than unity and thus the threshold value
of B?l/Bm for mirror instability can be significantly lower in
kappa distribution plasma.

Finally, we consider |§]<1 and |£|<<1, ie., 6,60,
> w/k; (hot electrons and hot ions). If the imaginary terms in
the series expansion of Z/(£,) are not included in Egs. (50)
and (51), we have

<1+’"e0§u> ieE, __ K, (03_02'_>& (66)
mby ) my 0~ 2 =D\ 6, 65/ By

U)2
1_k2v2

EBM(

K, 2x”+]k 4779"0(0i
K, — 1 2K|| k I\“BO

(1+8;), (65)

» kz(B - B)

=—1

- ﬁ)i,, (67)
eI ozx/orzu S0

that Ed:O, the dispersion relation that follows from Eq. (67)
is

i_[l
KV
1 26, + 1&)] -

respectively. For the convenient case of 03 1=

r.
+ 2_)('2(3 -B)

K g (1 £
+ —_— - | — —
S K, =22 =1 By
when 92 /()f,,I is related to B, /B, The instability condi-
tion can be written as

ﬁf‘(] Bl_Bh)
+————
K2 2
2
LK Kl—]2K1:+lBL>
2|:I+EBH< K:_22K”_lBa|l ]<0
(69)

This is similar to Eq. (64) and so the discussion following
Eq. (64) applies, exeept that in this ease both the hot elec-
trons and the hot ions partieipate in the instability process. In
particular, for nearly perpendicular propagation (ky/k <€1)
and for B,,/B.=0B;. /By, the instability condition is
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By k. —12x+1 B,

(70)
where B8, =2 8, .. The instability condition (70) 1s evidently
different from the corresponding condition for Maxwellian
plasma, which is obtained from Eq. (70) by taking the limits
Ky, k . — . When the imaginary term in the series expansion
of Z;(_én) is included, the dispersion relation is modified as

2 2 2
w" [

ki K
_","1: | +?(_B —/3n)+-l\§-§[3m

X,

e -|2x,+1g,,_(]

2k L.(¢ )>]
APt s
K_ _22K”_ 1 Bn" 12K| + 1 e

(71)

and it takes into account the clectron and the ion transit-time
damping.

For all the cases considered above, the Landau damping
and the transit-time damping rates of the hydromagnetic
waves in kappa distrihution plasma can be significantly dif-
ferent from those in Maxwellian plasma depending on the
allowed values of x{(>1/2) and «, (>2). Further discussion
on it is presented in Sec. IV.

IV. DISCUSSION AND PHYSICAL INTERPRETATION

We have classified the hydromagnetic waves and their
stahility properties in kappa distrihution plasma according to
the relative magnitudes of thc wave phase speed and the
electron and ion thermal speeds (|&,| and |£]) and considered
only the limiting cases for which solutions of the appropriate
dispersion relations are analytically tractahle. Such analytical
approach is ohviously limited in scope and applicability; but
it helps to understand the important hasic features of the
waves. A more rigorous analysis requires numerical solution
of the dispersion relations. Conclusions reached here for a
specific choice of the kappa distribution function would re-
main qualitatively unchanged for other possihle choices of
the kappa distribution.”'®

The well-known results for the hydromagnetic waves in
Maxwellian plasma are casily recovered from the results re-
ported here by taking the limits &, k| —%. The comparison
shows important differences hetween the kappa distribution
plasma and the Maxwellian plasma. First, the magnitude of
the resonant wave-particle interaction in the suprathermal re-
gion of the velocity space {(v=w/k;> 0,) is considerably
larger in kappa distribution plasma than in Maxwellian
plasma. This is evident from Fig. 1 where the hehavior of
—-Im Z' as a function of |w/{k,f)| is shown for two types of
velocity distrihution. The reason for the marked difference in
the magnitudes of —1m Z’ (which is proportional to dfy/ dv,
at v =/ k) when |w/(k;6)|> 1 is that the slope of the kappa
distribution in v-space decreases according to a power law,
whereas the slope decreases exponentially in the case of the
Maxwellian distribution. Hence, both the Landau damping
and the transit-time damping (magnetic analogue of Landau
damping) of the waves are enhanced and, consequently, the
threshold values for the excitation of unstable hydromagnetic
waves in kappa distribution plasma are increased. Other im-
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FIG. 1. Comparison of —lm Z’ vs x, where x=|w/(k 6,)|. Solid curve is for
Maxwellian disiribution. Dashed curves with decreasing lenglhs of segmenis
are for kappa distnbulions wilh k=2, 4, and 6. respectively.

portant differences are the following. In the parameter re-
gimes |&]> 1 and |&,| <€ 1. (1) the frequency of the oscillatory
stable mode (e.g., kinetic shear Alfven wave) in kappa dis-
trihution plasma is different from that in Maxwellian plasma
[see Eq. (42)] and (2) the instability conditions for the
nonoscillatory, purely growing compressional modes, which
are excited duc to pressure anisotropy, are different from
those in Maxwellian plasma [see Egs. (58) and (60)]. The
condition for the mirror instability, which is excited in the
parameter regimes || <1 and |£,|5 1, is also diffcrent [sce
Eqg. (65)]. The differences can be attributed to the fact that
the density and temperature perturhations of the charged par-
ticle species a in kappa distribution plasma are different
from those in Maxwellian plasma when |£,| <€ 1. This inter-
esting aspect 1s discussed below.

When b,,=0 and |&,|<€1, neglecting the imaginary
term and keeping the leading term in the rest of the series
expansion of Z/(£,) in Eq. (15). we find

ﬁ_n iqu 2K:E+ = (
g  dTalg=1 "

= (72)
21 =1 Ty / By

after relating ()f, and Oi to T, and T, . This is evidently
different from the corresponding expression for Maxwellian
plasma, which is given by the x;,— > limit of Eq. {72). Simi-
larly, by calculating the perturhed parallel pressure p, from
Eq. (12) we find

ﬁ#" iqn = ( 7} )i}~
Lo —LE 4|1~ S Sy
Pail TIY” BO

(73)

which is clearly the same for both kappa and Maxwellian
plasmas. That 5 ,,/p should be the same for any choice of
equilibrium distribution is easily understood if we recognize
that it also follows from the parallel (to By) component of the
linearized momentum halance equation &

O=—ikpy+ qp,nol:fz + k(P —Pa _)(11/80). (74)

Equation {74) is derived from the linearized Vlasov equation
by taking the appropriate velocity moment and by neglecting
the nertia term for the considered low frequency waves. We
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then notice from Eqs. (72) and (73) that p/py # ./ 1.

This suggests a nonzero temperature perturhation 7, in
kappa distribution plasma given hy

T, B,
+ ——) (75)

Ta_ 2 (iQasz
kIITaII Tnll BO

Ty 21

In contrast, p,/ pa=H4/ng and, henee, fn”—O in Maxwdllan
plasma under the same low frequency conditions.”™* That

n,,—O in Maxwellian plasma also follows from Eq. (75) hy
taking the limit x;,— .

We next discuss p,, /p,, . which plays role in determin-
ing the excitation conditions of the field swelling and mirror
instahilities [see Eqgs. (60) and (65)]. Calculating 5, /p,,
from Eq. (12) and kecping the leading order terms when
|€,]<1 and b,,~0, we find

D g, 2ry+ 1 =~ - 126+ 17, \B,
P_iE_LKu_EZ”(,_K_ K )
Pai kT oy 2= 1 K =22~ 1 Toy ) By’
(76)
Subtracting i,/ ng wc also find
i K, 2K”+ | T EZ
s=1-—— . (77)
Tn]. K -2 2K|| BO
2829

The corresponding expressions for Maxwellian plasma
are ohtained by taking the «;, «, — > limits, and the differ-
ences between the kappa distribution plasma and the Max-
wellian plasma are evident. Quantitative cstimatcs of the dif-
ferences dcpend on the speeific values of x(>1/2) and
K, (>2).

In Appendix B, we prescnt a more convenient form of
the perturbed distribution function f,, that may he used in-
stead of Eq. (12) to ohtain 7, P, and p,, given hy Egs.
(72), (73), and (76).
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APPENDIX A: DERIVATION OF EQS. (15)-(17)

In obtaining 7, j,, and j~‘ from Eqs. (12)—(14), we need
to evaluate a set of integrals in (v;,v ) space. When Eq. (4)
is used for f 4, the nceded integrals in v, space are

= *d 0
J’ dv”vﬁgao and J’ &ﬁ, (A])
= = W= kpy Ay,

where 1=0,2 and g.o(v)=[1+v]/(k,05) 1" *D. Other
integrals in v, space are either zero due to symmetry or can
be reduced to the first integral aftcr partial integrations. The
first integral is evaluated with the change in integration vari-
ablc as
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o g v [ 1
= L + S —
f_x Ao a0 = (K~ O) fo d’(] + )]

[(1+ ])/Z]I‘[K" -
r+ 1)

(1-1)/2]

I
=1 "i]. 7] 0,)"!

(A2)

for K|>([—])/2 wherL in the last step we have used the
standard mtegra]

x ta_l
dr
J;) (] + [)a+h

The second integral after partial intcgration and change in
integration variahle is

J¢+x dvu &g(m:kij‘wcdv o
- w—k”v" (9U|| "(9(1) — ”(w—k”v")

R i_J'W ds
kllonll ﬁgn —x (S - ga)(] + sz/KII)K e
(A4)

I'(a)l'(b)
I'a+b)

(Rca>0, Reb>0). (A3)

where €,=w/(k0,). It is related o Z(&,)=dZ,(£,)/dE,,
where Z,(&,) is defined hy Eq. (26). The needed integrals in
v, space are

’ : oh
J‘dvivLJ(z)haO, fdv;v_(]—]é)ﬁ—"o,
v

0 0

J'dvlvalol(')hao, J'dev Jolo—5 “0,

0

x x ﬁh(
J v, 0, G Pl J dv;_vfu(yﬁ,

0 0

- = oh
J dv v} () h g, J A )
0 0 ) ﬁvL

where hw(v3)5[1+v2i/(;q0i )] *:*D. When the scries
expansions of Jy and J, are used and the leading few terms
arc kept, the ahove integrals are of the form [gdu vl 1
+v2 (k6 )]<*P) where [=1,3,5,... and p=1,2. It is
evaluated by changlng the integration variahle and then us-
ing the standard integral [Eq. (A3)] and is given by

f dv v [1+02/(k 8 )]xe)

0
= ("0, )T+ 1)/2]
X, +p-+1)2V[2I(x, + p)] (A6)
for k, >[(I+1)/2]-p. Evaluating the leading terms of the
integrals in Eq. (A5) using Eq. (A6), we obtain the A; given

by Egs. (18)~(25). The expressions for 7, ,, and ]‘ given by
Eqgs. (15)—(17) are obtained when the abovc results are used.

ey
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APPENDIX B: A MORE CONVENIENT FORM OF f,
WHEN b,,, ~0 AND |w/ (K f,)| <1

Phys. Plasmas 16, 052106 (2009)

1s a kappa distribution of the form given by Eq. (4). we
cboose

o \ C(] 2uB, )—(x +1) ] 2(e — uBy) —(k;+1)

. i HE) = +— e ;
Here we Sonslrucl the portion of the perturbed distribu a K;nln()i K;|"1(103,g-

tion function f, that 1s most relevant to the calculation of 77, (B1)
Pa» and p,, wben b, =0 and |w/(k6,)|<<1. (Landau

damping and transit-time damping are considered unimpor- ~ wbere € is a  normalization  constant.  Using  u

tant.) Since
the magnetic moment ,u=m(,vz‘/(28), wbich is a valid adia-
batic invariani, and the total particle encrgy in 1tbe wave ficld
e. Kecping in mind that the equilibrium distribution function

=[m,v* /(2By)](! —§Z/BO) = po(1-B./ By), e=ggtq, P,
where 80=m(,(sz +vﬁ)/2 and & is the electrostatic potential,
and expanding f, in a Taylor scries around pu=pg and €
=gq we obtain

w/ €, <1, we argue that f, will be a function of

2(K||+ I) ol a~
folpt &) = fo0— P (80— moBo) | — 5 fa0
K KiMa Uy my by,
2u0B, | « +1( 210By )-' K+ 160 2 1 E .
T - ‘ 1+ = 5| 1+ — (&g~ poBy) —fb B2)
m 4, K K.'"n”i, K o(zru K,,m(,Of," e B“j - (

Here f,0=f{pu=pg.6=€g) and the additional tcrms represent 1be perturbed distribution function f(,. Using JEiE:/k" for the
considered low frequency waves and returning to the velocity space vanables, we find

3

T 2+ 1) 1 igE, Ul |k +1 I K+ 16, 1 B,

oAU U == =) 2 al - 2 3 5 als -

folv ) 5 3 3 * (fao. (B3)
K 1 +0i(g0) mky O, 6 K 1+, 0 K 041+ 06 | By

and f(v? .vy) is same as that given by Eq. (4). With this convenient form of f,, the necessary velocity integrations can be
carried out more easily by using Eq. (A3), and it may be verificd 1bat 7, j, and p, calculated from Eq. (B3) are identical

to those given in Sec. IV from a more complete form of f,,.
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